
Mojo
Python’s Typescript moment?

Team inovex
Karlsruhe · Köln · München · Hamburg
Berlin · Stuttgart · Pforzheim · Erlangen

● Why Mojo?
● Mojo’s Concepts
● Look at the Playground

2

Mojo

Why Mojo?

Isn’t Python great?

3

Why Mojo?

● Unifying the world's ML/AI infrastructure
● Providing an innovative and scalable

programming model for accelerators and other
heterogeneous systems

● Addressing the limitations of existing languages
(Python)

4 Source: https://docs.modular.com/mojo/why-mojo.html

https://docs.modular.com/mojo/why-mojo.html

Why Python?

● Dominant in ML and countless other fields
● Easy to learn, known, has community, packages,

tooling
● Dynamic programming features support beautiful APIs
● Non-negotiable for Modular's API surface stack
● We believe Python is beautiful

5 Source: https://docs.modular.com/mojo/why-mojo.html

or “during a gold rush, sell shovels” 🟨⛏

https://docs.modular.com/mojo/why-mojo.html

Why should be care?

6 Image Source: https://en.wikipedia.org/wiki/Chris_Lattner

Chris Lattner is the CEO of Modular
● Clang Compiler / LLVM
● Swift Programming Language

Tim Davis is the CPO
● LLVM / MLIR
● Google ML/Brain

https://en.wikipedia.org/wiki/Chris_Lattner

(C)Python’s shortcomings

7

● Poor low-level performance
● Single threaded (GIL)
● Building & Debugging C/C++ Extensions

is complicated
● Old & problematic programming concepts
● Deployment

Image Source: https://www.meme-arsenal.com/en/create/meme/1094474

https://www.meme-arsenal.com/en/create/meme/1094474

Mojo’s Concept

Will Mojo break the C/C++/Cuda monopoly?

8

let and var declarations

🔒 let is immutable
🔓 var is mutable
🎉 Lexical scoping
👥 Name shadowing
🛝 Type specifiers

9

struct types

● Mojo equivalent of Python’s class
● support methods, fields, operator overloading, decorators, …
● bound at compile-time
● must be declared with var or let
● Additional build-ins structs

○ Int

○ Float
○ StringLiteral (\0 terminated)

○ …

10

Strong type checking

● struct type with compile-time-bound value specifications
def pairTest() -> Bool:

 let p = MyPair(1, 2)
 return p < 4 # gives a compile-time error

● Mojo supports type hints & strong type specifications
● Only code with strong types will allow the compiler to make

more aggressive optimizations

11

fn - new function/method definitions

12

Feature fn def

Argument mutability Immutable Mutable

Argument type specification Required Optional

Return type specification Required Optional

Local variable declaration Explicit Implicit

Exception handling Explicit Implicit

fn: strict mode of def

Python def vs Mojo def vs Mojo fn

13

Feature Python def Mojo def Mojo fn

Argument passing method Reference semantics Value semantics by
default

Immutable references by
default

Mutability of arguments Mutable Mutable Immutable by default

Visibility of changes to
arguments

Visible outside the
function

Not visible outside the
function

borrowed: Arguments
cannot be changed
inout: visible outside the
function

Argument passing
convention

Copy (__copyinit__) Borrowing

Borrow Checker 🦀

● There can only be one mutable reference to the same value
● Multiple immutable borrows per value are possible
● Cannot pass one mutable (inout) and one/more immutable

(borrowed) references at the same time
● Mojo fn arguments borrow by default (think C++ const&)
● Small values (Int, Float, SIMD) are passed directly in

machine registers
● No sigils (&) needed to pass as immutable borrowed reference

14

Transfer arguments (owned and ^)

● owned argument convention is for functions that take exclusive ownership
● The ^ operator transfers ownership of a value to another entity

fn take_ptr(owned p: SomeUniquePtr):
 use(p)

fn usePointer():
 let ptr = SomeUniquePtr(...)
 use(ptr) # Perfectly fine to pass to borrowing function.
 take_ptr(ptr^) # Pass ownership of the `ptr` value to another function.

 use(ptr) # ERROR: ptr is no longer valid here!

15

Python integration

● Python.import_module() imports a module into Mojo
(Importing individual members is not yet available)

● Python.add_to_path() to add local Python code
● Memory management works out of the box
● Mojo primitive types implicitly convert into Python objects

16

Python integration

17

my-python.py:

import numpy as np

def my_algorithm(a, b):
 array_a = np.random.rand(a, a)
 return array_a + b

mojo-code.mojo:

from PythonInterface import Python

Python.add_to_path("path/to/module")
let py = Python.import_module("my-python")

let c = py.my_algorithm(2, 3)
print(c)

Interlude: Multi-Level Intermediate Representation (MLIR)

● Reusability: MLIR can be used to create compilers for a variety of languages
and hardware platforms.

● Extensibility: MLIR is designed to be extensible, making it easy to add new
features and optimizations.

● Flexibility: MLIR supports multiple levels of abstraction, making it well-suited
for a variety of compiler applications.

func @add(x: f32, y: f32) -> f32 {
 %add = addf x y
 return %add
}

See https://mlir.llvm.org

18

https://mlir.llvm.org

MLIR in Mojo

● Target multiple accelerators
○ GPUs
○ TPUs
○ CPUs
○ …

● Built In auto-tuning and adaptive compilation
(vector-length-agnostic algorithms)

● Low-level IR in Mojo code

struct OurBool:
 var value: __mlir_type.i1

19 See https://docs.modular.com/mojo/notebooks/BoolMLIR.html

https://docs.modular.com/mojo/notebooks/BoolMLIR.html

Playground 🛝

https://playground.modular.com/

20

https://playground.modular.com/

Mojo Resources

🔥 https://www.modular.com/mojo
🦮 https://www.modular.com/get-started
🛝 https://docs.modular.com/mojo/
🎥 Modular Product Launch 2023 Keynote
🎥 Fireship: Mojo Lang… a fast futuristic Python alternative

21

https://www.modular.com/mojo
https://www.modular.com/get-started
https://docs.modular.com/mojo/
https://www.youtube.com/watch?v=-3Kf2ZZU-dg
https://www.youtube.com/watch?v=V4gGJ7XXlC0

Vielen Dank!

22

Bernd Kaiser

Software Developer

bernd.kaiser@inovex.de

mailto:bernd.kaiser@inovex.de

