
SolidJS
Simple and performant reactivity for building user
interfaces

Team inovex
Karlsruhe · Köln · München · Hamburg
Berlin · Stuttgart · Pforzheim · Erlangen

Bernd Kaiser

Software Developer from Erlangen

Focus:

● Web
● Security

JSCC23 Organizer

Bernd Kaiser

@meldron

https://jscraftcamp.org/
https://www.linkedin.com/in/bernd-kaiser/
https://github.com/meldron

JavaScript Craft Camp 2023

June 30th & July 1st in Munich

● BarCamp for JavaScript enthusiasts of
all levels

● Free
● Organized by the community, for the

community

Register at
https://jscraftcamp.org/registration

3

https://en.wikipedia.org/wiki/BarCamp
https://jscraftcamp.org/registration

● SolidJS Reactivity
● JSON Web Token
● Component Props
● Control Flow
● Stores
● Async

4

Agenda

SolidJS Basics

Components, Reactivity & more

5

What is SolidJS?

● Performant
● Powerful
● Pragmatic
● Productive

6

Performant

7 Source: https://krausest.github.io/js-framework-benchmark/2023/table_chrome_114.0.5735.90.html

https://krausest.github.io/js-framework-benchmark/2023/table_chrome_114.0.5735.90.html

Essentials of SolidJS Components

● JSX Syntax: good support in all
editors & TypeScript

● Component Composition: Nested
and reusable components

● Rerender Control: executed once
- only the parts of the UI that are
affected by the change will be
updated

● Component Lifecycle: onMount
& onCleanup

8

function MyButton() {

 return (<button>I'm a button</button>);

}

export default function MyApp() {

 onMount(() =>

 console.log("app mounted")

);

 return (

 <div>

 <h1>Welcome to my app</h1>

 <MyButton />

 </div>

);

}

Reactivity: Signals

● createSignal is the basic
building block

● returns a getter and setter function
● SolidJS tracks signal getter usage

in components
● on setter usage, all depended

components are updated
● updates are fine-grained and do

not force a component rerender

9

function Counter() {

 const [count, setCount] = createSignal(1);

 const increment = () =>

 setCount(count() + 1);

 return (

 <button type="button" onClick={increment}>

 {count()}

 </button>

);

}

Source: https://www.solidjs.com/tutorial/introduction_signals

https://www.solidjs.com/tutorial/introduction_signals

Derived Signals

● Functions wrapping signals also behave as signals.
● Reactivity Source: Derived signals gain reactivity

from accessed signals.

10

function Counter() {
 const [count, setCount] = createSignal(0);
 const doubleCount = () => count() * 2;
 setInterval(() => setCount(count() + 1), 1000);
 return <div>Count: {doubleCount()}</div>;
}

Source: https://www.solidjs.com/tutorial/introduction_derived

https://www.solidjs.com/tutorial/introduction_derived

createEffect

11

● Run side effects when dependencies change
● Dependencies: Signals, Memos, Props, Stores
● Effects are meant primarily for side effects that read but don't

write to the reactive system

function Counter() {
 const [count, setCount] = createSignal(0);
 createEffect(() => {
 console.log("The count is now", count());
 });
 return <button onClick={() => setCount(count() + 1)}>Click Me</button>;
}

Source: https://www.solidjs.com/tutorial/introduction_effects

https://www.solidjs.com/tutorial/introduction_effects

createMemo

12

● Memos are both an observer, like an effect, and a read-only
signal

● Run only once for any change
● Cache values in order to reduce duplicated work

function Counter() {
 const [count, setCount] = createSignal(1);
 const fib = createMemo(() => {
 console.log('Calculating Fibonacci');
 return fibonacci(count());
 });

 return <button onClick={() => setCount(count() + 1)}>{fib()}{fib()}</button>;
}

Source: https://www.solidjs.com/tutorial/introduction_memos

https://www.solidjs.com/tutorial/introduction_memos

JSON Web Token

Short JWT introduction

13

JSON Web Tokens (JWT)

● JWT Definition: Digitally signed tokens for secure data
exchange.

● Self-contained: Encodes all relevant information within the
token.

● Usage: Primarily for authentication and secure information
exchange.

● Scalable Authorization: Stateless design reduces server load.
● Data Transmission: Flexible, supports claims for multiple

parties.

14

Structure of a JWT

● Header: Defines token type (JWT)
and signing algorithm used.

● Payload: Contains claims or pieces
of information about the entity.

● Signature: Ensures the sender's
identity and data integrity.

● Encoding: Each part Base64Url
encoded, separated by periods.

● Format:
encodedHeader.encodedPayload.sig
nature for a complete JWT.

15

Example:
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9
.eyJzdWIiOiI0MiIsIm5hbWUiOiJBcnRodXI
iLCJpYXQiOjE1MTYyMzkwMjJ9.kxQ5yjGcYt
_H_uDihzbrx9G7sAQP9rdhl_sc0VgtUrM

{
 "alg": "HS256",
 "typ": "JWT"
}
{
 "sub": "42",
 "name": "Arthur",
 "iat": 1516239022
}

JWT Usage

JWT are typically send with every request in the Authorization HTTP
header as Bearer Token.

Example:
curl -X GET \
 -H "Authorization: Bearer eyJhbG…VgtUrM" \
 https://example.com/api/resource

16

JWT Disclaimers

🤫 Treat JWT as secrets and never paste them into websites
👀 Use local tools (you trust) to explore JWTs
⛔ Do not implement verification yourself
🤔 Token revocation is a hard problem
⛟ Big JWT increase the size of every request

17

Exercise 1: Signals & Effects

1. git clone https://github.com/meldron/solid-jwt-workshop.git

2. Follow setup and run instructions
3. Open src/App.tsx and add reactivity to Token text area so

that new Tokens update Header, Payload & co
4. Bonus: verify Token

18

https://github.com/meldron/solid-jwt-workshop.git

Component Props
& Control FLow

19

Component Properties

● Props: readonly reactive properties passed to components
● Consistent Form: unchanged by signals, expressions, or static

values
● Access Method: utilized via props.propName
● Avoid Destructuring❗: Prevents reactivity loss outside tracking

scope
● Utility Functions: merge/split reactive objects, preserving

reactivity

20 Source: https://www.solidjs.com/tutorial/props_defaults

https://www.solidjs.com/tutorial/props_defaults

Component Properties Example

interface GreetingProps {
 name: string;
 age?: number;
}

const Greeting: Component<GreetingProps> = (props) => {
 const merged = mergeProps({ age: 42 }, props);
 return (
 <div>
 <p>Hello, my name is {merged.name}.</p>
 <p>I am {merged.age} years old.</p>
 </div>
);
};

21

<Greeting name="Bernd"/>

renders as

Hello, my name is Bernd.
I am 42 years old.

Control Flow

● Solid provides several control flow components:
Show, For, ErrorBoundary, Switch / Match, Index,
Suspense, Dynamic, Portal

● Should be preferred over JS control flow (e.g., Array.map)
○ Fine-grained Reactivity: Only affected components rerender.
○ Memory Efficiency: Automatic cleanup of signal listeners.
○ Syntax Consistency: Embed control logic directly in JSX.
○ Keyed Updates: Better tracking and handling of lists

22

Show Component

● Conditionally renders children, if the
when condition is true

● When used with a callback, the
callback is only executed, if the
condition is null asserted

● Optionally can be keyed to a
specific data model => the function
is re-executed whenever the model
is replaced

23

<Show when={merged.age > 17}
 fallback={<div>Loading...</div>}>
 <div>My Mature Content</div>
</Show>

<Show when={merged.user}
 fallback={<div>Loading...</div>}>
 {(user) => <div>{user.name}</div>}
</Show>

<Show when={merged.user}
 keyed>
 {(user) => <div>{user.name}</div>}
</Show>

Source: https://www.solidjs.com/tutorial/flow_show

https://www.solidjs.com/tutorial/flow_show

For Component

● Iterates over lists for rendering
● Accepts an each and

fallback prop
● The callback takes the current

item as the first argument
● The optional second argument

is an index signal
● On a list change, updates or

moves items in the DOM

24

<For each={merged.users}
 fallback={<div>Loading...</div>}>
 {(item, index) => (
 <div>
 #{index()} {item.name} - {item.age}
 </div>
)}
</For>

Source: https://www.solidjs.com/tutorial/flow_for

https://www.solidjs.com/tutorial/flow_for

ErrorBoundary Component

● Catches uncaught errors and
renders fallback content

● Also supports callback form which
passes in error and a reset
function.

25

<ErrorBoundary

 fallback={<div>My Bad</div>}>

 <Greeting name="Test"/>

</ErrorBoundary>

<ErrorBoundary
 fallback={
 (err, reset) =>
 <div onClick={reset}>
 Error: {err.toString()}
 </div>
 }>
 <Greeting name="Test"/>
</ErrorBoundary>

Source: https://www.solidjs.com/tutorial/flow_error_boundary

https://www.solidjs.com/tutorial/flow_error_boundary

Exercise 2: Refactor into Components

● Refactor the app into multiple components with props
○ TokenInput
○ Header
○ Payload
○ …

● Use Control Flow Components to enhance the user experience
○ For loop over header properties / values
○ Show an error message if the JWT is invalid (not set)
○ …

● Use .tsx as file extension for components
● Bonus: verify token only for HS256 JWTs

26

Stores

How to make your life easier

27

Stores

● Stores are proxy objects supporting
nested reactivity

● Signals are created as needed under
tracking scopes

● createStore returns a readonly store
proxy and a setter function

● Merges new properties with state and
supports nested updates

● Path Syntax: Allows powerful iteration,
range capabilities and granular
reactivity

28

const [todos, setTodos] =
 createStore([]);

const addTodo = (text) => {
 setTodos(
 [...todos,
 { id: ++todoId,
 text,
 completed: false
 }]);
}

const toggleTodo = (id) => {
 setTodos(
 todo => todo.id === id,
 "completed",
 completed => !completed
);
}Source: https://www.solidjs.com/tutorial/stores_createstore

https://www.solidjs.com/tutorial/stores_createstore

Store Mutations

● Solid strongly recommends the use
of shallow immutable patterns for
updating state

● produce is and an Immer inspired
store modifier

● produce mutates writable proxy
version of the Store

29 Source: https://www.solidjs.com/tutorial/stores_mutation

const [todos, setTodos] =

 createStore([]);

const addTodo = (text) => {

 setTodos(

 produce((todos) => {

 todos.push(

 { id: ++todoId,

 text,

 completed: false

 }

);

 }));

};

const toggleTodo = (id) => {

 setTodos(

 todo => todo.id === id,

 produce((todo) =>

 (todo.completed =

 !todo.completed)),

);

};

https://immerjs.github.io/immer/
https://www.solidjs.com/tutorial/stores_mutation

Exercise 3: add Stores

● Add store(s) in separate file(s) (use .ts file extension)
● Use store in your components to pass state around

30

Async

Promises & other lazy Stuff

31

createResource

● createResource provides simple
and efficient data-fetching.

● Streamlines handling of async
operations in UI.

● Automatically handles component
re-render on data change.

● Built-in suspense and error
boundary support.

32

const [data, { refetch }] =
 createResource(requestToken);

return (
<>
 <Show when={data()}>{data()}</Show>
 <Show when={data.loading}>⏳</Show>
 <Show when={data.error}>
 ⚠ {data.error.message}
 </Show>
</>
);

More Async Helper

● lazy: Allows dynamic import of components to supports code
splitting

● Suspense: coordinating multiple async events, eliminating
partial loading states, and offering fallback during resolvement

● SuspenseList: allows grouping and ordering the reveal of
loaded Suspense components

● useTransition: maintaining current view until all
asynchronous events are complete

33

Exercise 4: Async Calls

● cd into token-server/ and run npm run start
● Explore src/facts.ts
● Use a createResource to load a JWT with requestToken
● Use getFact with the loaded JWT to receive a animal fact
● Display animal fact

34

Thank you!

35

inovex is an IT project
center driven by innovation
and quality, focusing its
services on ‘Digital
Transformation’.

● founded in 1999
● 500+ employees
● 8 offices across

Germany

Bernd Kaiser

Software Developer

bernd.kaiser@inovex.de

www.inovex.de

mailto:bernd.kaiser@inovex.de
http://www.inovex.de

